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BRITTLE FRACTURE OF A CORE WHEN
DRILLING IN A COMPRESSED MEDIUM

-
E. A. Koshelev, P. A. Mortynyuk, UDC 539.375;622.011.4;622.023
E. B. Polyak, and E. N, Sher :

When drilling with core sampling in a medium compressed by mountajn pressure, fracture of the core
into separate disks is usually observed [1]. The thickness of the disks formed is related to the value of the
mountain pressure, and an increase in the pressure causes a reduction in the thickness of the core disks
which have split off. This experimentally established relationship is the basis of one of the methods used to
determine impact-dangerous parts in mines [2]. :

In this paper this phenomenan is investigated theoretically using the model of an ideally elastic medium,
fractured in a brittle manner. The following assumptions are made: a) The thickness of the walls of the drill-
ing instrument is assumed to be zero, as also the distance between the edges of the cylindricals cavity drilled
out by the drill in the rock; b) the action of the drill on the core during drilling is described by a distributed
tangential stress which twists the core. The normal stresses on the sides of the cut are assumed to be zero;
c) uniform compression stresses act at infinity, perpendicular to the axis of the cylindrical crack.

With these assumptions the problem of the fracture of a core in this model reduces to an analysis of
the stressed state in the region of the edge of the cylindrical cut produced, and, more accurately, to a deter-
mination of the intensity coefficients of the stress field Ky, K1, and Ky [3].

The simplest problem of the equilibrium in an infinite isotropic elastic space of a cylindrical cut of
radius « and length 2] whose axis is along the z axis, as shown in Fig. 1, is considered. Two cases of load~-
ing are considered: compression transverse to the z axis by a pressure equal to p, at infinity, and twisting
along the axis by a stress applied to the surface of the core.

1. The Axisymmetric Case. We will assume that the displacement vector is independent of the angle ¢
and has the form U= u-r + w*z. We will introduce dimensionless quantities by the equations (henceforth,
for simplicity, the primes will be omitted)

v W,z
(uuzra>_§———{—r—a>,

U;j =045/, Py To)' = {Po, T/

Then the equations of equilibrium and the components of the stress tensor can be written in the form
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Fig. 1

& 18 u, Puw v
2(1ev){3r—;‘+76i:—r—‘;],+(1—2v)é+—az‘;r=0, | t.1)
PFw, 18 ?w . 4o »
(1‘—2")16—;;“;—-;3-:31'{-2(1—");5 —x'a—z[a—r-f-—,_t‘-]:().

o, = (1 —2v)"H(1 — v)ou/or + v(u/r + dwldz)],
0,, = (1 — 2v)~t(1 — v)ow/dz + v(u/r + duldr)], o,, = 2-'[0uldz 4 dwlér].

We will distinguish two regions in the space considered. Quantities relating to the region r = a will
be given the subscript 1, and those relating to the region r = ¢ will be given the subscript 2. Assuming the
deformed state of the body to be symmetrical with respect to the z = 0 plane, we will write the general solu~
tion of the equilibrium equations (1.1) as follows:

u, (r,2) = %j{srA () Iy (sr) -+ [sB(s) — 4 (1 —v) A(s)1 I (sr)} cos (sz) ds,

wy (ry 5) = — 2 [ 1B () Ty (5r) + 1A () Iy (s7)] sin (s2) d,

o0

uy (r, 2) = 'ZEY {srC (s) Ko (s7) + [sD (s} +- & (1 — v) C (s)] K, (s7)} cos (sz) ds,

0
wy (r, 2) = %5 s[D(s) Ky (sr) +rC (s) K, (sr)] sin (s2) ds.
[1]

The four arbitrary functions A(s), B(s), C(s), D(s) can be found from the boundary conditions

o = pep (2, o =0 for r=a, |2|<1 @.2)

and the additional conditions (the continuity of the displacement field and the continuity of the componénts of
the stress tensor on the surface r = a)

Uy =uy Wy=w, for [z2]=1,
o = ot ol =i for |z|< oo a.3)

From the second pair of conditions (1.3) we obtain expressions for A(s) and C(s) in terms of the two un~
known functions B(s) and D(s). After this the remaining conditions (1.3) and the boundary conditions (1.2)
can be represented in the form

iy — wl = & j [By (5) fo -+ Dy (s) frgl cos (s2) ds = 0, z3>1,
@

-

ra s ol = J $1B1(5) fus + Da(s) fral 05 (52) ds = 0,
’ (1.4)

oW _n%_ j [B1(s) Fy — Dy (s) Fpl cos (s3) ds = pyp (z)
(1]

o) %5;31 (5) Fy- Dy (s) Fyl ssin (sz)ds = 0, 0<z< 1,
0
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where B, (s)=B(s)sF;*; D,(s) = D (s) sF3*%;
' Fy = fsfs + fafs Fr = s7hlfsfs — fefils
Fy= sy 1fy f1— fafgls Fy= Fofafs's Fy = Fof i
= — (3 —2v) sl, (sa)-}—[sza-}-[’(1 ")]Il (sa);

fo = stal, (sa) — —S—-I1 (sa);
fa= (8 — 2v) sK,y(sa) + [sza 44 (1 v)] K, (sa); f; = s%aK, (sa) +

+—"" Kl (sa) ’
f = saly(sa) — 2(1 — v)I,(sa); fo = sl (sa);
fr = saKy(sa) + 2(1 — v)K,(sa); fa = sK,(sa);

fo =sly(sa)+ 2922 I, (s0); fyo = 5K, (s0) — 2E=V £, (s0);

f11=. awlo(s‘l)”*‘fe?fl = _a > Te-

We will reduce the system of four integral equations obtained for the two unknown functions By(s) and
D, (8) to a system of two integral Fredholm equations of the second kind for the function ¢ (t) and ¥(t), con~
tinuous in the interval [0, 1] by the method described in [4].

The functions ¢ (t) and § (t) are specified by the equations ' .

1 . 1
uo(a,z)z‘sw, wo(a’z)= 8 -+ b(1)dv

VaeE—_2" Vi—2 V 22
where u(a, z) and wy(a, z) are identical with w @, z)—u,(@, z)and dw;/dz — 3w2/8z for r= g, apart from
the coefficients, The parameter 6is found from the condition that the displacements wy(a, z) and wy(a, z)
should be identical as z — 1, and is given by the expression

1

8-=— | y(r)dt

From the first two equations of system (1.4) we obtain equations defining By(s) and Dy(s) interms of the
functions @(t) and ¥(t)

By(s) = F-t—s-Y,0¥ + f1aDy], Dy(s) = F-1s=f¥, — fry®y],

where
: X
V= —s;"a—}"‘—(—i:l)%l;?f-); Gy = | 19 () J, (s1) dT3

sa

1
¥, -2 [610 &)+ {9 () 74 s dr] -
[}

The remaining equations of system (1.4) can be reduced, as in [4], to a system of integral Fredholm equations
of the second kind (for simplicity we take p(z) = 1 = const)

1

o (0 +2 | g1 (1) Ky (5, t)dr—‘)Sw)Kz(r, fdv =2V,
0 0

1 (L.5)
) 2 {0 () Ky (0 0 do zf(pl () Ko (5, 1) dv = 4 VT,
1}

0

where

G (1) == 02 (1) P Wy (8) = £71/24 (2) p13 8 = — j Vg () dt;

Al(r ) = Vrtj sg1 () S (s2) Jo (sT) ds;

]

Ky(t,t) = V%t_j $25(8) Jo (st) [J4 (s7) — T4 ()] ds;
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Kyt t)=VTi | s I:gz; () —Z g (s)] Tolst) 1/, (st) — T, ()] ds;

Kt )=Vt \'s [gs(s)—-'“— l(s)]Jo(.st)Jo(st) ds;

0

g () =2+ B — MNP+ =0, —1/2 2,(5) = — 571 [z®, + Dl

23 (5) = s [20, + D} 4+ =
g4(s) = 22D, — 1/2; D, = I(2)Ky(z) — L(2)Ky(z); D, = z%4(2)K,(3)
— [22 +2(1 —v)U(2)K\(2); 2 = sa; & = 1/4 — ~.
By finding a solution of system (1.5) we can calculate the stress fields and the dlsplacements at any point of
our region.

2. Twisting of a Cylindrical Crack. In this case the unit component of the displacement vector u, =
u(r, z) differs from zero, while the equilibrium equation and the nonzero components of the stress tensor
have the form (in dimensionless form)

. 2
— + —-—— =+ P 0, Oy = OU/Or — ulr, G, =0uldz. 2.1)

We will assume that u(r, z) is an even function of z. As previously, the subscript 1 will denote quanti-
ties relating to the inner cylinder while the subscript 2 will relate to the external cylinder r = . The solu~-
tion of the equilibrium equation (2.1) can then be written in the form

oc

u (r, z) = %5 (s) I, (sr)cos(sz)ds, u® (r, z)= J_Z?j’B(s) K, (sr)cos (sz) ds
0

0

The arbitrary functions A(s) and B(s) are found from the boundary conditions and the continuity conditions
forr=a

o' — 11, (2), o = TOT,(z for [z|<t,

oty = o, ut = u® NEI-2

(2.2)
The first three conditions define the expression o'’} W@, z) = 0(2) oas z) for r = a, |z| < », whence we have
A(s)lo(sa) + B(s)Ky(sa) = To(é‘),

where

To(s) =s" ‘rﬂj[rl( z) — 7, (z)] cos (sz) dz.

Introducing the new function F(s) defined by the equation
A(s)y(as) — B(s)Ki(as) = F(s),

the first and last conditions from (2.2) can be written in the form

= g s?al, (sa) [K, (sa) F (s) + Ty(s) Ky (sa)l cos(sz) ds =75 7, (3), 0Lz
2.3)

w (2, 2) = u® (g, ) — u® (g, 2) = -i-j sycos(sz)ds =0, z3>1.
0

From the last equation we obtain
1
F(s)= é w (a, z) cos (s2) dz 2.4)
Since the displacements u'l) (g, z) (i =1, 2) as z — 1, i.e., at the head of the crack, behaves as (1 — z)"2,
we will infroduce the function ¢ (t) by the equation

1
1P (1) dt

w(a, Z) = V;z-_——_?
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Substituting the expression for w(«, z) into (2.4) we obtain

F(s) = —S'ttp (3) Jo (57) dr.

The second equation of system (2. 3) is satisfied 1dent1ca11y for any function ¢(t). Substituting F(s) as the
defining function in the first equation of system (2.3) and carrying out the required transformations, as was
done in [4], we obtain the integral Fredholm equation of the second kind

. ‘

at)~ @K@ Ha=F@, 0<i<1, 2.5)
0
where -
= () Vit K(t,t)= 2Vt sﬁ s [‘1/2— saIz(sa) K, (sa)] Ty (st) J4 (s7) ds;

(z) dz

V 2
3. The Main Features of the Stresses and Discussion of the Results. The solutions obtained have the

property that the stresses have a singularity at the vertex of the crack of the order of ral/ ¢ where rg <1 is
the distance external to the vertex of the crack (see Fig. 1). The conditions for limiting equilibrium of the
crack are completely defined by the coefficients of the stress intensity K, Ky, and Kyyj for these singulari-
ties. We will obtain the stress intensity coefficient of the problems considered assuming that the solutions of
the Fredholm equations (1.5) and (2.5) are known. For twisting of a cylindrical crack the stress org canbe
written in the form

F(t)u-—'l/t {) —53%[ {sa) Ky (sa) Ty (s) Jo (st) dsy.

o 1

o‘,},} (r, )~ S s%akK, (sa) 12 (sr)cos (sz) ds j Te(t) Folst)dr4-... . (3.1)

Assuming that a—r = ¢ « 1, for s >»>1 we have
s*aK,(sa)l,y(sr) ~ e—es[(2a8)* + 0(3‘2)} 3.2)

In the inner integral we will also distinguish the principal part
1
fro) Ty sy drae 2o (1) 7 (s).
0
Taking into account only the principal terms from (3.2) and (3.3) in (3.1) (it can be shown that the remaining
terms play no part in the formation of the singularity), we obtain [5]

3.3)

Grg(r, 5) & 1%1_) 5 e~% J, (s) cos (sz) ds = ‘Péﬂ[ — (2r)-12 ¢o _g]
[

or, reverting back to the dimensional quantities, we have

% (1) o) K
L {1—1/——60577'0 ]| T 5 Vlil s 3. (3.4)

Grp 2

Proceeding in a similar way as in the axisymmetrical case, and omitting the fairly lengthy calculations, we
obtain asymptotic equations for the components of the stress tensor, which hold in a small neighborhood of the
vertex of the erack and agree with the equations given in [6]

1\6 sin 5 P cos 2 cos 3— — ¢ (1) cos [1 -+ sin -q—>sm 3¢]}

O (1y 2) = 2 2

o VT
V

P

[2 + cos 2 cos —] —; (1) cos = [1—sm-’Esm?’_q’]}

0'zz(r’ z) = 3 3

& cos —2{1-—: 2 in32 — @, (1 51n—cos-gcos3—(p .
2L 2 2 2

0 (r, 2) = V—Ta )
Hence
__ WA VT AL 3.5)
K= 272 " K““z;fé‘a
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Fig. 2

where ¢ and ¢;(1) are given by Egs. (1.5).

In the limiting case as a —» dnd 74(z) = 75,(z) = 1, we obtain from Eq. (2.5) ¢,;(1) = 2, and from (3.4)
we obtain Ky = TOJT/fz‘; which corresponds to the solution of the problem of the equilibrium of an iscolated
crack of length 27 under antiplane deformation conditions.

In the axisymmetrical case from Egs. (1.5) as a — = we obtain ¢, (1) = 2, 9;(t) = 0, from (3.5) we ob~
tain Ky = —pgv1/2; Kp1 = 0, which corresponds to the solution for an isolated crack under plane deformation
conditions.

The integral Fredholm equations (1.5) and (2.5) were evaluated numerically on a computer. As an ex-
ample, we show the results obtained in evaluating the system of integral equations (1.5) for v = 0.3 graph-
ically in Fig. 2. Here curves 1 and 2 correspond to the variation of ¢;(1) and (—d) as a function of the ratio
a/1l. For small values of a /I the quantity ¢ (1) can be regarded as stable and its values can be approxi~
mated quite well by the expression

ou(1) = 1.095) a/l.
When a/l «< 1 the solution of the problem reduces to the solution of the problem of the equilibrium of a semi-
infinite cylindrical crack, for which, using Rice's method [6], we obtain
K+ Kb = o) 22 (3.6)
or
H (VR .
@1 { fU—BT

Using this relation we can refine the dependence of ~6 (curve 2) on /I for small values of a/l, where it is
difficult to make numerical calculations on a computer.

Figure 3 shows the results of 2 numerical evaluation of Eq. (2.5) assuming that

2y — 1 1=h<a<t
— TalZ2) = T4 {Z) = ? 04> 1y,
2(2) =11 (2) {O, oeisi =k
Lines 1-5 represent the variation in a/l-¢,(1) as a function of a/1 for f,/1 = 1.0, 0.9, 0.8, 0.5, and 0.2, re-
spectively. If a/l > 1, we have a/l- ¢;(1) ~Va/l, Inthe other limiting case for a/1 « 1, using Rice's
method [6] we obtain
2,0, — M "
Vine'?  nyind? (8.7
where M = 27a’1yl, is the moment produced by the stress 7, acting on a section of length fg. Curves 1-5,
with an accuracy of from 1% to 5% (depending on the value of the ratio 14/1) for @/l =2 can be approximated
by an expression similar to that obtained in [7]

Ky =

Lo = Vip[t—o0u ], 3.8)

In Fig. 3 the lines 6-10 represent the results of numerical evaluation of Eq. (2.5) assuming that 1;(z) = 0,
and T4(z) is the same as above for ,/1 = 1.0, 0.9, 0.8, 0.5, and 0.2, respectively. Inthis case for a/l >»>1 the
quantity a /1 - ¢;(1) asymptotically approaches the value 1 —2/7-arcsin (1 —1;), and for @/l = 1 with an ac~
curacy of to within 2% can be approximated by the equation

4 1 ,
Fu =7V [-;! + 0.096-;'-].
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Fig. 3

In the problem of twisting for z = 0 the stress o2¢ = 0, i.e., the plane z = 0 is free. The problem
can be interpreted as follows: A cylindrical crack (core) is drilled perpendicular to a free surface, while the
stress o represents the friction between the instrument and the rock. Taking as the criterion of fracture
[3]

(1—v)[KE + Kh]+ Kl =2p L, : 3.9)

‘

where vy is the surface energy arriving per umit of free surface of the body, and assuming that the quantities
Ys 5 Tos @ are specified, using curve 1 in Fig. 3 we can determine the length of the first piece broken off.
Considering only the twisting (K1 = K1 = 0), we obtain from (3.4) and (3.9)

a 4 Tl a\¥2 ., [a\e?
TR =7 5(7) =’*o(-z) : (3.10)

This relationship is represented by the dashed curve in Fig. 3 (in this case the constant k; = 3). The point of
intersection of this curve and curve 1 defines the length of the first piece a/l; = 0.73 or I, = 1.37a.

Consider the following idealization of the process. We will assume that the instrument sinks a distance
1y, and we will then assume that the tangential stresses act only on this part 7, while on the length of the
part which has broken off I, they are zero (it rotates together with the cutting instrument), and the overall
length in this case willbe I = I + ;. In order to obtain the size of the second piece, in this case it is suf-
ficient to equate (3.8) (where we have taken only the principal term) and (3.10)

' ko(a/l)*/? = (4V a)(a/DV2- 141,
whence I, = [y = ko\/'vr—/ 4-a = 1.33a. Obviously this process can be extended further.

In the general case when Ky = 0 and Kyp = 0, i.e., there is side compression, in the limiting case when

a/l « 1 we can estimate the effect of the value of the side pressure p; on the size of the pieces broken off.
To do this we substitute the asymptotic expressions (3.6) and (3.7) into (3.9) and obtain

.1 Po_

ETIAENR T o
Hence we see that the maximum size of the pieces broken off when drilling the core is obtained when there is
no side compression (py = 0). As py increases the size of the piece decreases and approaches zero when
Pt =4(1+ v)yua L
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CONSTRUCTION OF THE CREEP EQUATIONS FOR
MATERIALS WITH DIFFERENT EXTENSION AND
COMPRESSION PROPERTIES

B. V. Gorev, V. V. Rubanov, UDC 539.376
and O. V. Sosnin

Constructional materials of light alloys such as aluminum~magnesium and titanium possess different
tensile properties for tension and compression. Whereas the "instantaneous' elastoplastic properties may
differ only slightly, the difference in the properties under prolonged action (e.g., the duration up to fracture)
may reach several orders of magnitude [1]. Figure 1 shows a diagram of the creep of VT~9 titanium alloy at
a temperature of 400°C with different combinations of tension (compression) and twisting at a constant stress

0; = (02 4 31)V2 = 72.5 kg/mm?

in the form of the time~-dependence A = g¢ + 7y. The marks on the diagrams correspond to the marks of the
scheme of the stressed state of the plane ¢ —v37. It can be seen from the diagram that the intensity of the
creep process with ¢ = const decreases as the stress state changes from pure tension to pure shear and
compression. Here for comparison we show two diagrams, namely, pure tension with o5 = 71 kg/ mm®
(points 1) and twisting of a thin~walled tubular specimen with oj = 77.5 kg/mm? (points 2), the intensity of
the creep process of which is the same.* The example given clearly illustrates the need to construct a
theory which would enable one to describe creep in complex media.

One of the first attempts to describe creep in media with different resistance to tension and compres-
sion is described in [2], in which the actual stresses are replaced by "reduced" stresses, and a theory is
constructed assuming similarity between the deviators of the rates of deformation and the "reduced" stresses.
This method has not been developed any further, and in practice even simple problems lead to quite compli=-
cated equations [3].

Another approach is to construct creep equations in the form of a dependence of the "equivalent rate of
deformation” ne on the "equivalent stress” ge, where the intensity of the rate of deformation 7 =
(2/371le1 ki W2 s usually taken as ng, while o is considered as a function of the stress tensor invariants.
The creep equation is supplemented by the law of flow (e.g., by the gradient iy = kaa;/ 80kl , where cré is
not always the same as cg) {4, 5].

Attempts have been to construct equations assuming the existence of a potential creep function which
depends on the stress tensor invariants and scalar parameters of the strengths [6-13]. The potential function
is assumed to be both smooth [6-8, 12] and piecewise-smooth [9, 11, 13}, and equations have also been con~
structed with more general assumptions [14].

When constructing defining equations the different resistance to tension and compression is taken into
account by introducing info ce, in addition to the second invariant of the stress deviator, one of the odd in-
variants: In a number of papers preference is given to the first invariant of the stress tensor [6, 9, 11, 15,
16-18], while in others preference is given to the third invariant of the stress deviator [7, 8, 12, 14]. Al-
though it is not our purpose to make a more detailed review of the papers in this field, we will illustrate the
most typical approaches to constructing defining equations containing in addition either the first or third in=-
variants of the stress tensor by using the example of the creep of OT-4 titanium alloy at a temperature of
475°C and different combinations of tension-twisting and compression-twisting.

* N. G. Torshenov participated in these experiments.
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